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Abstract 
The first part of this paper presents a review of the problems that constrain the reliability 

of radiocarbon-based age models with particular focus on those used to underpin marine 

records. The reasons why radiocarbon data-sets need to be much more comprehensive 

than has been the norm hitherto, and why age models should be based on calibrated data 

only, are outlined.  The complexity of the probability structure of calibrated radiocarbon 

data and the advantages of a Bayesian statistical approach for constructing calibrated age 

models are illustrated. The second part of the paper tests the potential for reducing the 

 1

mailto:j.lowe@rhul.ac.uk
mailto:fabio.trincardi@bo.ismar.cnt.it
mailto:alessandra.asioli@igg.cnr.it
mailto:simon.blockley@archaeology-research.oxford.ac.uk
mailto:wulf@gfz-potsdam.de
mailto:Antonio.Cattaneo@suroit.ifremer.fr


uncertainties that constrain radiocarbon-based age models using tephrostratigraphy.  Fine 

(distal) ash layers of Holocene age preserved in Adriatic prodelta sediments are analysed 

geochemically and compared to tephras preserved in the Lago Grande di Monticchio site 

in southern Italy.  The Monticchio tephras have been dated both by radiocarbon and varve 

chronology.  The importance of basing such comparisons on standardised geochemical 

and robust statistical procedures is stressed.  In this instance, both the Adriatic and 

Monticchio geochemical measurements are based on wavelength dispersive spectrometry, 

while Discriminant Function Analysis is employed for statistical comparisons. Using this 

approach, the ages of some of the Adriatic marine ash layers could be estimated in 

Monticchio varve years, circumventing some of the uncertainty of radiocarbon-based age 

models introduced by marine reservoir effects.   Fine (distal) ash layers are more 

widespread and better preserved in Mediterranean marine sequences than realised 

hitherto and may offer much wider potential for refining the dating and correlation of 

Mediterranean marine sequences as well as marine-land correlations.  

 

Keywords 
radiocarbon-based age models;  tephrochronology;  volcanic Event Stratigraphy;  Lago 

Monticchio record; Bayesian method; WDS geochemical data; Discriminant Function 

Analysis (DFA) 

 

1.   Introduction 
Accurate dating and correlation are essential for the construction of reliable models of 

sediment architecture and influx rates in marine basins, as well as for establishing the 

links between changes in sedimentation and palaeoenvironmental events. In recent years, 

the survey and analytical tools employed in the investigation of marine sequences have 

become more sophisticated, increasing the precision with which palaeoenvironmental 

records can be assessed.  At the same time, analysis of Greenland ice cores (e.g Alley et 

al., 1993;  Dansgaard et al., 1993; North Atlantic Ice Core Project Members, 2004; 

Rasmussen et al.,  2005) has shown that environmental changes during the late 

Quaternary were much more abrupt than previously understood, with some marked 

changes in climate possible within a few decades.  These developments have fuelled a 
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demand for greater geochronological precision in the analysis of marine sedimentary 

sequences, to support better resolved palaeoenvironmental records.  The question arises, 

however, as to whether available geochronological methods can deliver this increased 

precision. 

 

The method most routinely employed to date marine fossils and sediments spanning the 

last ca. 50,000 years is radiocarbon dating.  It is now evident that this method cannot 

normally provide age estimates for Holocene events at greater than a centennial precision, 

while true uncertainties of the order of millennia will commonly constrain dates for pre-

Holocene events (see below).  In this paper we explain why conventional procedures for 

the construction of radiocarbon-based age models are less secure than has been 

commonly assumed, and why the wider application of tephrostratigraphy, the basis of a 

regional Event Stratigraphy scheme, can yield more reliable results.  

 

The discussions focus on records from the Adriatic Sea, as the views expressed here have 

emerged from workshop activities conducted within the EU-funded EURODELTA and 

EUROSTRATAFORM projects.  The general bathymetric and geographical context of the 

study area, as well as locations of all cores and sites referred to in the text, are shown in 

Figure 1.  One of the key aims of these collaborative initiatives was the development of 

more robust age models to underpin precise correlations of marine sediment sequences in 

various sectors of the Mediterranean, including the Adriatic Sea.   However, the 

recommendations developed below have much wider application to the dating of marine 

sequences in general.  

 

2.    Interpretation of radiocarbon-based age models 
2.1   Limitations of radiocarbon dating 

Four general sources of uncertainty constrain the precision and accuracy of radiocarbon 

dates obtained from marine samples :  (1) analytical (laboratory) precision; (2) factors 

affecting the geological (stratigraphical) integrity of dated materials; (3) marine reservoir 

errors; and (4) calibration procedures.   Each of these is discussed in turn.  
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FIGURE 1:   Bathymetric and geographical details in the study area, and locations of all 
cores referred to in the text. 
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2.1.1   Analytical (laboratory) precision 

The 1σ analytical error ranges for most conventional radiocarbon measurements are 

commonly of the order of 80 to 150 (i.e. ±40 to ±75) radiocarbon years, which limits the 

potential to date events with a high temporal resolution.  It is still the case that many age 

models used in studies of Late Quaternary marine sequences are based on radiocarbon, 

and that evaluation of the validity of the models usually only addresses the laboratory 

(activity measurement) precision errors, perhaps because they are readily expressed in 

mathematical terms.  However, these values should not be regarded as indications of the  

accuracy of the age estimates. A sample submitted to a radiocarbon laboratory which 

contains a mix of organic materials of different age resulting, for example, from 

geological or laboratory contamination, will yield a spurious radiocarbon ‘age’, being an 

average of the radiocarbon activities of the various components. The activity of such 

‘mixed’ samples can, nevertheless, be determined extremely precisely if the organic 

carbon content is high. Hence high precision does not of itself indicate reliability. The 

geological integrity of samples must always be evaluated independently, though 

contamination of samples may not always be readily apparent, and its effects difficult to 

define statistically. 

 

2.1.2  Geological or stratigraphical integrity of samples  

When selecting samples or fossils from sedimentary archives for radiocarbon dating, it is 

generally assumed that the constituent carbon in each dated horizon is contemporaneous 

with the time of sediment accumulation.  This is unlikely to always be the case, as no 

sediment horizon is a closed system. In the case of lake sediments, carbon content may be 

affected by a number of site-specific influences (Lowe & Walker, 2000), including, for 

example, ‘hard-water’ effects which reduce 14C activity, leading to ages that are older 

than expected – i.e. giving an ‘apparent age’. The problem of apparent age is prevalent in 

the marine realm, but the main causes in this context are ocean circulation processes and 

variations in the rate of carbon exchange between the oceans and the atmosphere.  The 

resulting ‘marine reservoir error’ is probably the most serious and widespread source of 

error affecting radiocarbon dates obtained from marine samples. 
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Other factors that may complicate the interpretation of radiocarbon age models are fossil 

recycling (reworking), contamination during coring or other sampling procedures, and 

isotopic fractionation.   It is widely assumed that these problems can be circumvented by 

carefully selecting specific types of macrofossil for dating – as, for example, the selection 

of specimens of a single species of planktonic foraminifera (e.g. Bard et al., 2000, 2004a; 

Waelbroek et al., 2001).  Even very small fossils can now be dated using AMS methods, 

which are able to generate reasonable measures of 14C activity from as little as 10 mg of 

organic carbon. In these cases, however, it becomes even more imperative to test for the 

possibility of contamination, since minute amounts of modern carbon could significantly 

distort the results.  Furthermore, small fossils may be mobile in the sediment column (see 

e.g. Turney et al., 2000) and hence radiocarbon data-sets based on selected macrofossil 

samples are not necessarily superior to those based on bulk sediments. The integrity of 

the results generated by both approaches needs to be tested. 

 

2.1.3   The ‘marine reservoir error’ 

The marine reservoir effect is an off-set in 14C age between organisms that derive their 

carbon from the marine environment and contemporaneous terrestrial organisms 

(Ascough et al., 2005).  It is caused by a combination of (a) slow mixing of ocean waters, 

(b) temporal variations in the rate of exchange of CO2 between the ocean surface and the 

atmosphere (e.g. Alley and Clark, 1999; Kanfoush et al., 2000; Hughen et al. 2004), and 

(c) upwelling of 14C-depleted waters near some coasts (Mangerud and Gulliksen, 1975; 

Goodfriend and Flessa, 1997). The modern reservoir effect in near-surface ocean waters 

generally varies between about 200 and more than 750 14C years and averages around 

400 14C years.  Until comparatively recently, a standard correction of 400 years (Rt) was 

applied to marine-based radiocarbon age estimates. More recent evidence has shown, 

however, that modern ocean surface reservoir ages vary with latitude and circulation 

effects.  Evidence of marked regional departures from Rt has led to efforts to define local 

correction factors, which are expressed as deviations from Rt, termed ΔR (Reimer and 

Reimer, 2001; see http:/www.calib.org).  Marine radiocarbon data-sets are now routinely 

adjusted using regional ΔR correction values (e.g Hutchinson et al., 2004). Asioli et al. 

(1999), for example, suggested c.170 14C years to be an appropriate ΔR for samples from 
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the Adriatic, while Siani et al. (2000) suggested a value much closer to Rt as appropriate 

for other parts of the Mediterranean. 

 

The practice of defining regional ΔR values is not straightforward. Although broad 

spatial trends are evident at the global scale, variations in modern ocean surface 14C 

activity can appear random when viewed at the regional scale (Reimer and Reimer, 

2001). The reservoir ‘age’ of the modern Mediterranean surface, for example, generally 

varies between 280 and 665 14C years, but also records values well in excess of 1,000 14C 

years.  Furthermore, marine reservoir effects have not remained constant over time (Sikes 

et al., 2000; Bard et al., 1994; Austin et al., 1995; Voelker et al.,1998). Siani et al. (2000) 

reported significant temporal variations in the magnitude of the marine reservoir effect in 

the Mediterranean Sea during the recent past.  Finally, samples from deep water basins 

tend to have large reservoir errors, while the gradient in radiocarbon age between surface 

and deep waters may also have varied over time (e.g. Shackleton et al., 1988; Sikes et al., 

2000).  All of these effects provide valuable insights into changes in ocean circulation 

and climate (Ascough et al., 2005), but make radiocarbon-based age modeling extremely 

problematic. 

 

2.1.4   Calibration 

The internationally-accepted standard model for radiocarbon calibration, INTCAL04 

(Reimer et al., 2004), is based upon radiocarbon-dated tree-ring samples for the sector 

that extends from the present back to ca. 11.9 kyr (tree-ring yr) BP.   Although the use of 

tree-ring samples provides the most rigorous calibration data available, calibration of 

Holocene radiocarbon dates is not without problems, due principally to short-term 

oscillations in atmospheric radiocarbon content (e.g. Van Geel et al., 2003).  The highest 

level of calibration precision for Holocene events is achieved by obtaining multiple 

radiocarbon dates and matching the temporal trends in the resulting data to the tree-ring 

based calibration curve (radiocarbon ‘wiggle-matching’ – see e.g. Van Geel and Mook, 

1989; Kilian et al., 2000; Blaauw et al., 2004).  Even when this approach is successful, 

statistical uncertainties remain, and it seems highly unlikely that these procedures can 

ever provide a precision better than centennial when using relatively low sample numbers 
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and INTCAL04 (Telford et al., 2004 a, b).  Hence, no matter how rigorously radiocarbon 

data are treated, the fact remains that calibration frequently introduces an additional error 

term, over and above those associated with laboratory precision and uncertain geological 

context.   By the rules of combination of statistical errors, calibration will normally 

reduce the precision of age estimates quite substantially and not, as some practitioners 

appear to believe, the opposite.  In theory, however, it does provide more accurate age 

estimates, in that the uncertainty ranges are more realistic (more likely to encompass true 

age). 

The uncertainties introduced by calibration increase dramatically in the case of 

radiocarbon age estimates older than Holocene.  The part of the INTCAL04 calibration 

data-set which dates between approximately 15,585 and 11,500 years BP (the 

‘Lateglacial’ period) is primarily based on radiocarbon-dated laminated sediments from 

the Cariaco Basin (tropical Atlantic) (Hughen et al. 2004; Reimer et al., 2004).  Beyond 

15,585 cal BP, and extending back to approximately 24,000 year BP, INTCAL04 is based 

on paired 14C/U-series dates obtained from corals. The radiocarbon dating of this part of 

the INTCAL04 data-set is thus based predominantly on marine samples which may be 

affected by a marine reservoir error.   Although there is some reason for believing that 

this error may not have varied significantly during the last 25,000 years or so (Hughen et 

al., 2004), this is by no means certain.  Calibrating radiocarbon dates of Lateglacial age 

using INTCAL04 therefore introduces uncertainties, the magnitude of which are difficult 

to assess at present, but they are likely to exceed those associated with Holocene age 

estimates, and could well be millennial in scale (e.g. Blockley et al., 2004). 

 

Problems of calibration are even more acute for radiocarbon ages greater than ca. 25 kyr 

BP.   A number of attempts have been made to secure reliable calibration of the 

radiocarbon timescale back to about 50 kyr BP, based on a range of sedimentary archives.  

These include the varved sediment sequences preserved in the Cariaco Basin (Hughen et 

al., 2004) and Lake Suigetsu, Japan (Kitigawa and Van der Plicht,1998, 2000), emerged 

coral reef formations in the raised coastal terraces of New Guinea (Yokoyama et al., 

2000), speleothem carbonate from submerged caves in the Bahamas (Beck et al., 2001) 

and Bermuda (Chiu et al., 2005), a sequence of aragonitic lake sediments from Lake 

 8



Lisan in Israel (Schramm et al. 2000), and deep marine sediment sequences that can be 

matched with ice-core records using assumed synchronous palaeoenvironmental events 

(Voelker et al., 1998; Bard et al., 2004a).  There are marked differences between these 

calibration models, partly because the dated material is of such antiquity that it contains 

very small mounts of residual 14C and hence precisions are low.  The reliability of the 

models is therefore difficult to test at present. Until this matter is resolved, calibration of 

radiocarbon dates older than ca. 25 kyr BP will introduce uncertainties that are millennial 

in scale (Bard et al., 2004a, 2004b).  

 

2.2   Radiocarbon-based age models 

 

The chronology of a suite of sediments that falls within the range of radiocarbon dating is 

generally determined by generating a series of radiocarbon age estimates from selected 

horizons to construct an age-depth curve or age model (e.g. Figure 2).  Procedures for  

constructing an age model from the data vary, depending upon the degree of ‘scatter’ in 

the results.  The simplest approach is to join the mean values of individual dates and 

assume a linear sedimentation rate between each dated horizon.  For complex data-sets 

distorted by a number of age reversals, this procedure is not straightforward.  In such 

cases, quite arbitrary decisions often have to be made which may involve rejecting or 

down-weighting some of the values because they are regarded as ‘outliers’ with respect to 

some hypothesised general trend, such as a polynomial regression (Figure 2; see e.g. 

Asioli et al., 1999; Walker et al., 2003).   

 

Employing such procedures underestimates the statistical limitations in the data, 

however, especially if the data are analysed using the radiocarbon timescale.   Six key 

limitations that need to be considered are as follows.  First: if the radiocarbon dates are 

defined with a 1σ precision, then it follows that the true ages of about one third of the age  

estimates will lie outside the given error ranges, making the practise of joining mean 

values highly questionable.  Using a 2σ precision increases accuracy, but reduces 

precision.  Second: a coherent age-depth plot generated from the data does not 
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FIGURE 2: Age-depth plot with polynomial regression trendline for radiocarbon 
measurements obtained for marine core sequence CM92-43, located in the central 
Adriatic (for location and other contextual details, see Figure 1,  Asioli et al., 1999, 
Blockley et al., 2004).   
 

 

necessarily mean that the age-depth relationship is as straightforward as might appear, or 

that the mean radiocarbon ages can be taken as reliable indicators of age.  The validity of 

this approach depends upon the number of age estimates obtained for the period under 

investigation, which partly determines the temporal precision with which events can be 

resolved.  If a low number of dated points is available, and the magnitude of the 

differences in mean age between dated horizons exceeds that of the error ranges of the 

individual dates, then a generalised age-depth plot may well be valid, though it would be 

a crude model at best.  The higher the temporal resolution attempted, the more difficult it 

becomes to resolve a reliable age-depth relationship, since the magnitude of the 

uncertainties of individual age measurements may exceed the time intervals between 

dated horizons.  This problem will be compounded further by geological (sample 

integrity) and calibration uncertainties. 
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Third: assumptions of linear sedimentation rates between dated horizons are unlikely to 

be valid, especially in the case of sediments that have accumulated during episodes of 

pronounced climatic change.  The more widely spaced the dated horizons in a series, the 

more questionable this practice becomes.  Linear or polynomial smoothing of the data are 

perhaps even more subjective, because more sweeping assumptions about rates of 

sedimentation and bioturbation become necessary.   

 

Fourth: the practice of excluding apparent ‘outlier’ values on the grounds that they do not 

conform to a perceived regular age-depth relationship is invalid if the data are plotted on 

the radiocarbon timescale, because that timescale is not linear. The true age-depth 

relationship of a series of radiocarbon dates cannot be established unless the data have 

been calibrated.  Individual radiocarbon age estimates can have several alternative 

calibrations due to the pronounced ‘wiggles’ in the radiocarbon calibration curves, while 

age estimates that appear to be in inverted order when plotted in radiocarbon time may 

not remain so when plotted in calibrated time (Bowman, 1990; Buck et al., 1991; Buck 

and Christen 1998; Blockley et al., 2004). 

 

Fifth: an individual radiocarbon age estimate amounts to a single estimate of the 

statistical variance in radiocarbon activity that characterises each sampled horizon.  

Unless several independent age estimates are obtained, the variance in radiocarbon 

activity for that horizon remains unknown, and hence the validity of a single radiocarbon 

measurement will be difficult to test.  Several recent studies have shown how an increase 

in the number of age estimates obtained, coupled with the dating of different organic 

components, leads to more comprehensive assessments of the ‘radiocarbon inventory’ 

preserved in sediment sequences, and a more secure basis for age modelling (e.g. Turney 

et al., 2000; Walker et al., 2001; Lowe et al., 2004).   

 

Sixth: perhaps the most crucial constraint affecting radiocarbon-based age models is the 

effect of calibrating the data.  Calibration introduces two significant difficulties. The first, 

already alluded to, is a markedly reduced precision due to uncertainties in available  
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FIGURE 3:   The uncertainty ranges of the INTCAL04 calibration plots of the 2σ 
probability ranges of the CM92-43 radiocarbon dates.  
 

 

calibration models.  This problem is especially acute for pre-Holocene data, as illustrated 

in Figure 3, which reveals the increased error ranges after calibrating the data of Figure 2.  

The second concerns the evaluation of the probability structure of a series of calibrated 

radiocarbon dates.   Radiocarbon dates are Gaussian in structure, but the calibration curve 

is non-Gaussian, and statistically complex, reflecting sudden variations in atmospheric 
14C content that are not fully understood or predictable (Taylor et al., 1992).  As a result, 

a radiocarbon date with a well defined mean and single mode (Gaussian distribution) will 

frequently ‘translate’ in calibrated time to a more complex probability spectrum, usually 

with several modes, and no straightforward way of assessing highest likelihood (Figure 

4).  Where age models from two or more sites are being compared, the mathematical 

relationships in the data can be highly complex. Increasingly, practitioners are turning to  
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FIGURE 4:   Bayesian age modeling output for core CM92-43 radiocarbon data using 
stratigraphical position to constrain the Highest Probability Density for each date.  The 
data were calibrated using the INTCALMarine04 model with no ΔR off-set.  Boundaries 
applied during data analysis are mathematical constructs calculated from all of the ages in 
the sequence and applied in order to constrain the computations to a finite time-slice (see 
Blockley et al., 2004).  Percentages to left are agreement indices calculated from the level 
of overlap between the original calibrated density functions (clear histogram) and the 
Highest Probability Density output (shaded histogram) resulting from Markov Chain 
Monte Carlo simulations.  
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the use of more sophisticated statistical tools for analysing such data, such as the 

Bayesian probability approach. 

 

2.3.   Optimising age-depth models and correlation schemes 

While the difficulties outlined in earlier sections of this paper raise serious questions 

about the limits of precision and accuracy achievable with radiocarbon-based age models,  

there are realistic expectations that the position will markedly improve in the near future. 

Calibration models should become much more tightly constrained when continuous tree-

ring series are extended beyond 11,900 cal BP (e.g. Friedrich et al., 2001; Kromer et al., 

2004).  Our understanding of temporal variations in atmospheric 14C concentration may 

benefit from new studies of temporal variations in abundance of other cosmogenic  

nuclides, such as 10Be (e.g. Beer et al., 2002; Muscheler et al., 2004).  In due course, a 

fuller understanding of the spatial and temporal variations in marine reservoir 

effects can also be anticipated, leading to refined reservoir corrections.  However, these 

developments will be undermined if the raw radiocarbon data-sets to which they are 

applied are themselves inadequate; there is a parallel need, therefore, for more robust and 

better constrained radiocarbon data-sets to underpin calibration exercises and any age 

models derived from the results.  Three refinements that could readily be employed to 

achieve this are as follows. 

 

First: an increase in the number of radiocarbon age estimates used to underpin each site 

investigation, sufficient to allow rigorous assessment of any statistical trends in the data-

set, is essential (Bennett, 1994).   Most published site chronologies for the Mediterranean 

region are inadequate in this respect. A data-bank of all radiocarbon-based site 

chronologies relevant to the EURODELTA Concerted Action project, in total comprising 

some 600 radiocarbon dates obtained from 260 marine Mediterranean sequences 

spanning the late Quaternary (last 25,000 years or so), revealed that only 4 site 

chronologies consisted of 10 or more radiocarbon dates.  The most robust series was that 

obtained for site CM92-43 in the Adriatic (Figure 2).  Given the relatively low precisions 

associated with most of these dates, collectively the results offer little more than 
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‘rangefinder’ capacity (i.e. no better than a millennial resolution). For substantially better 

constrained age models, many more age estimates would be required.  As a useful guide, 

Telford et al. (2004b) conclude that, in order to achieve a true centennial resolution, 

around 24 dated horizons would be needed from a typical Holocene series to reduce 

statistical noise to a level where meaningful smoothing splines could be fitted to the data.  

Few published radiocarbon data-sets from the Mediterranean region are that robust. 

 

Second: without some analysis of the degree of variance that characterises dated 

horizons, it can be difficult to determine which age estimates are reasonably reliable and 

which are aberrant values.  In Figure 2, for example, two ‘clusters’ of dates are evident 

that are difficult to interpret without some objective basis for determining reliability. 

Constructing an age-depth model through such data entails arbitrary decisions, and the 

less robust the data-set, the more subjective the exercise becomes.  Increasing the number 

of age measurements to test for replication might reduce the statistical scatter, though it 

could well result in the opposite, if there has been significant sediment mixing.  This 

would be a costly exercise, however, without any guarantee of success.  Nevertheless, if 

the objective is to generate age models that are both accurate and precise, then this 

problem of sample heterogeneity needs to be confronted.  Perhaps resources could be 

focused on tests of the statistical reliability of age models developed for particularly 

important sequences, such as regional type sites, or of the validity of reconstructions that 

suggest unusually abrupt changes in sedimentation rate or apparent age reversals. 

 

Third: though calibration of radiocarbon dates increases statistical uncertainty, it is 

nonetheless essential. The true age-depth structure of a series of radiocarbon dates can 

only be tested in calibrated (‘real’) time, because of the non-linearity of the radiocarbon 

timescale. Interpreting the results requires the deployment of sophisticated statistical 

procedures, such as Bayesian methods, to cope with the non-Gaussian probability 

distributions of calibrated data-sets (for explanation of this approach see e.g. see Buck et 

al., 1991; Buck & Blackwell, 2004; Christen et al., 1995; Blockley et al., 2004).  An 

attempt to apply Bayesian analysis to the CM92-43 radiocarbon data-set (Figure 5; Table  
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FIGURE 5:   Calibrated age-depth model for CM92-43 using the Bayesian package 
within OXCAL and the INTCAL04 calibration data-set. 
 

 

1) illustrates the procedure, but also the limitations that existing Mediterranean data-sets 

present when adopting this approach. 

 
A Bayesian form of Markov Chain Monte Carlo analysis was applied to the CM92-43 

radiocarbon data using the INTCAL04 calibration model, the OXCAL software (Bronk  

Ramsey, 1999) and a prior rule that age must increase with sediment depth. The method 

tests sequentially through all possible combinations for the highest probability match 

between (i) the sub-set of the CM92-43 radiocarbon data-set that best obeys the prior rule 

and (ii) the INTCAL04 calibration model. The probability distribution of individual 

radiocarbon age measurements are treated independently in the analysis, so that the 

outcome is not based on knowledge of the other radiocarbon dates in the set, or on a pre-

judgment of the order in which the dates should plot; the data only need satisfy the prior  
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Sample 
Depth 
(cm) 

14C 
mean 

age (yr) 

lab    
error 
(yr) 

Calibration error 
range (cal yr) 

sample 
type/  
event 

78.5-81.5 3200 60 3209.5 2849.5 Plank 
150 4400 60 4779.5 4399.5 AMS 

220-224 6160 60 6739.5 6439.5 Plank 
295-298.5 8220 70 8959.5 8539.5 Plank 

368.5-
371.5 9090 80 10149.5 9549.5 Plank 
389.5-
391.5 9880 60 11049.5 10589.5 Plank 

400-404 10450 90 11899.5 11199.5 Plank 
431.5-
435.5 10640 90 12299.5 11599.5 Plank 
451.5-
455.5 10740 70 12599.5 11899.5 Plank 
491.5-
495.5 11290 100 12859.5 12399.5 Plank 

510-513 11010 90 12879.5 12629.5 Plank 
605 12000 100 13619.5 13249.5 NYT 

610-614 12100 90 13759.5 13399.5 Plank 
627-631.5 12390 60 13989.5 13719.5 Plank 
627-631.5 12680 70 14399.5 13929.5 Plank 

641.5-
645.5 12720 100 14749.5 13999.5 Plank 
AMS = Agnano Monte Spina    
NYT = Neapolitan Yellow Tuff    

Plank  = planktic forams    
 

TABLE  1   Calibration errors for the sub-set of radiocarbon dates in the CM92-43 
radiocarbon series that provides the optimal match to INTCAL04  following Bayesian 
analysis of the complete data-set  using a Sequence algorithm and uniform prior in Oxcal 
(Bronk Ramsey,1999).  See Blockley et al. (2004) for further explanation.  
 

rule.  The appeal of this approach is that it provides an objective test that is independent 

of stratigraphic assumptions, it employs the full radiocarbon inventory available for each 

sequence (no data are excluded until analysis is complete) and it makes any data selection 

explicit.  However, precision is markedly reduced when using this method (Table 1), 

especially with respect to the older dates in the series, partly because of the underlying 

uncertainties in the INTCAL04 model, but also as a consequence of the relatively low 

number of dates in the CM92-43 series. Attempts to apply this approach to other 

radiocarbon data-sets from the Mediterranean yielded highly unsatisfactory results 

because of the low numbers of dates in each data-set. For better constrained matches to 
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the INTCAL04 data-set, therefore, much more robust radiocarbon series are required 

from sites in the Mediterranean than those that are currently available.  

 

The wider adoption of the steps outlined above should lead to much better constrained 

radiocarbon-based age models, although testing the validity of the results will remain an 

issue while the uncertainties in calibration models, as well as those introduced by marine 

reservoir effects, remain so large.  An independent chronometer is needed to test the 

validity of models and of correlations based upon them.  Such a tool is readily available 

in the Mediterranean region - the routine use of isochronous tephra layers to correlate 

(tephrostratigraphy) and date (tephrochronology – i.e. when the ages of individual tephra 

layers are known) marine records.  

 

 

3. Testing the reliability of 14C age models using tephrostratigraphy 
3.1   Scientific context 

Tephra layers are widely encountered within late Quaternary sediment sequences in the 

Mediterranean, particularly in the central basins (e.g. Keller et al., 1978; Paterne et al., 

1988, 1990). They are routinely employed to date and correlate marine records (e.g.  

Calanchi et al., 1996, 1998; Siani et al.,  2004).   Some of them can also be traced to 

terrestrial sites, including lake basins, where they can be reasonably well dated. Of 

particular note in this respect is the Lago Grande di Monticchio sequence in southern 

Italy (Figure 1), which spans approximately the last 100,000 years, and which contains a 

detailed tephrostratigraphical record (a total of 340 tephra layers) for that time-span 

(Wulf et al., 2004).  Annually-laminated sediments are also preserved in this sequence, 

and hence some of the tephra layers can be dated by both radiocarbon and varve 

chronology (Brauer et al., 2000).   This means that marine records that contain the same 

tephra layers can be dated indirectly, assuming that the tephras are isochronous and have 

been identified reliably.   This  approach offers a distinct advantage for dating marine 

sequences, since terrestrially-derived age estimates, while not free of problems, are at 

least unaffected by the distortions caused by marine reservoir effects.  Indeed, 

comparisons between 14C ages obtained from both terrestrial and marine deposits that 
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contain the same tephra allows the magnitude of marine reservoir effects to be estimated 

(e.g. Austin et al., 1995; Blockley et al., 2003; Eiriksson et al., 2004).  This approach also 

provides age estimates for marine sediments that cannot be dated satisfactorily by 

radiocarbon due, for example, to the absence of suitable organic material. 

 

The potential that tephrostratigraphy offers for constraining radiocarbon-based age 

models is illustrated in Figure 6, in which the calibrated chronology for CM92-43 (Figure  

5) is compared with that from core PAL94-77.  Note that the former was derived using 

Bayesian analysis, whereas insufficient data were available to enable this approach to be 

adopted in the latter case.  Nevertheless, the key point to note is how the options are more 

tightly constrained when it is known that specific horizons in each sequence must be 

isochronous. In this example (Figure 6), the Agnano Monte Spina tephra (AMS) and the 

Neapolitan Yellow Tuff (NYT), dated respectively to approximately 5700-5400 and 

14,120 varve years in the Monticchio record (Wulf et al., 2004), are common to both 

Adriatic sequences, providing common ‘pinning points’ for evaluating how well the two 

series match.  Clearly, the more tephras that are common to each sequence being 

compared, the more pinning points that can be used for correlation purposes. This 

exercise remains worthwhile even when the ages of the tephras are not known, so long as 

it can be reasonably well established that they represent isochronous events.  If the ages 

of the tephras are known, then this information can be added to the data-sets being 

analysed by Bayesian probability procedures, which reduces the options when 

constructing age models. In this way, the error ranges in both age models compared in 

Figure 6 have been more tightly constrained. 

 

The potential for using tephras for these purposes has greatly increased in recent years 

with the discovery of very fine distal ash layers in marine sediments, sometimes referred  

as ‘microtephra’ or  ‘cryptotephra’ layers (Turney and Lowe, 2001).  Consisting of 

particles of less than c. 80 microns in size, these layers are invisible to the naked eye and 

hence only detectable when using sensitive laboratory extraction procedures and 

microscopic examination of sediment residues (Turney et al., 1997; Davies et al., 2002). 

They have been widely detected in lake sediments throughout Europe, as discrete but  
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FIGURE 6:   Calibrated models for CM92-43 (diamond symbols) and PAL04-77 
(squares), constrained after importation of two tephras of known age, the Neapolitan 
Yellow Tuff (NYT) and Agnano Monte Spina (AMS).  Note the reduction in scatter of 
calibrated age estimates achieved after importation of these data into the Bayesian 
models. 
 

very thin layers which can be traced to sites that lie far beyond the limits of the 

corresponding visible ash layers. Some of these distal ash layers have not been associated 

with visible tephras and may well record additional volcanic events not yet resolved in 

the proximal tephra record (e.g. Davies et al., 2001; Turney and Lowe, 2001; S. Pyne-

O’Donnell, 2005).    

 

It appears that distal ash layers may be equally widespread in some late Quaternary 

marine deposits. For example, a deep marine core from site SA03-11 in the Central 

Adriatic (Figure 1), which spans approximately the last 35,000 years, contains 36 discrete 

tephra horizons, only 9 of which are visible in the core, the others being non-visible ash 

layers that were not detected by routine magnetic scanning procedures (Abbott, 2005).  

Well preserved fine ash layers with distinct peaks in glass shard concentration have also 

been detected in ocean bottom sequences in various sectors of the North Atlantic 
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(Eiríksson et al., 2000, 2004;  Haflidason et al., 2000;  J.J. Lowe, S.P. O’Donnell et al., 

unpublished) as well as in shallow marine deposits in the north Adriatic (see below).  It 

appears, therefore, that there is considerable scope for augmenting the marine 

tephrostratigraphical record in order to increase the number of marker events that can be 

routinely employed to link marine sequences. 

 

There are clear benefits to be gained from the routine employment of tephrostratigraphy 

as a complementary tool to radiocarbon dating.  There are, however, a number of 

technical difficulties that need to be addressed.   First: several tephras can have very 

similar chemical signatures, because they have been derived from the same volcanic 

source.  Regular eruptions from the Phlegrean Fields and Vesuvius, for example, have 

produced tephras of similar chemical composition.  The Lago Grande di Monticchio 

record (Wulf et al., 2004) demonstrates this clearly, particularly for the middle Holocene 

which appears to have been one of the most volcanically active periods in this region 

during the last ~100,000 years. This record shows, for example, that the Agnano Monte 

Spina tephra, which hitherto was assumed to reflect a single volcanic event (e.g. Di Vito 

et al., 1999; Dellino et al., 2001, 2004), probably comprises at least four eruptive phases, 

spanning approximately 1,000 years. The four tephras have very similar chemical 

signatures, but possibly originate from two different eruptive centres -  Agnano Monte 

Spina and Astroni  (Wulf et al., 2004; see below). This presents both an opportunity and a 

challenge, since on the one hand it increases the temporal resolution with which marine 

sequences could potentially be compared, while on the other it may not always be 

possible to establish which event is represented if only one of the four tephras is present. 

 

Second: tephras can be recycled and some may not be represented in the sediment record.  

The discovery of distal ashes that are not represented in visible tephra records suggests 

that the history of volcanic activity is incomplete.  No single site is likely to contain a full 

record of the tephras emitted during specific intervals. Some records may be complicated 

by sediment disturbance and recycling, which can lead to resedimentation of tephras.  

Exacting analysis may be required to establish the degree to which individual records are 

afflicted by these problems. 
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Third: inconsistent and sometimes imprecise methods are employed to determine the 

chemistry of individual tephras.  Until comparatively recently, Energy Dispersive 

Spectrometry (EDS) has been the main analytical tool employed to determine the 

chemical signature of individual tephra layers recovered from marine cores, in part 

because analysis time is much shorter than is the case with the alternative procedure of 

WDS (Wavelength Dispersive Spectrometry). Unfortunately, measurement precision is 

lower for EDS, while the longer exposure to electron beam current can result in 

significant mobilisation of Na, which distorts the results obtained for element ratios (see 

Hunt and Hill 2001). This is caused by the unit sum problem, where the proportion of 

individual elements is calculated as a wt% of the total of all elements measured, and thus 

erroneously low values for one element will inflate the values of all of the others. In view 

of the fact that several tephras can have very similar chemical signatures, analytical 

precision is critical: practitioners are increasingly finding that EDS data in general, as 

well as poorly constrained WDS data, are insufficiently precise. 

 

Fourth: tephra chemistries are compared using inconsistent statistical procedures.  

Practices vary in the criteria used to compare tephra chemical signatures (major element 

ratios), with little consistency in the use of biplots and/or triplots, or in the elements 

selected for comparison, which are not necessarily chosen for sound geological reasons.   

Fifth: tephras are prone to chemical alteration.   Insufficient attention has been paid to the 

fact that glass is an unstable substance.  It is prone to chemical alteration in the sediment 

environment (Pollard et al. 2003), a tendency that may be enhanced in the marine 

environment (Horwell et al., 2003; Utzmann et al., 2002).  Distal ash particles may be 

susceptible to chemical attack during the application of chemical digestion procedures in 

the laboratory, due to their delicate nature and high surface-to-volume ratios (Blockley et 

al., 2005). 

 

Taking these problems together, there is ample scope for misidentification and false 

correlation in tephrostratigraphy.  More secure analytical protocols are required if the 

method is to achieve its full potential.  Reliable stratigraphical type sequences are also 
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required, where tephra layers are preserved in unequivocal successive order, and from 

which robust chemical data can be generated to provide standards for comparison.  For 

the central Mediterranean region, a strong candidate in this respect is the Lago Grande di 

Monticchio sequence. Here, a number of tephras are preserved in sediments that are 

finely laminated.  Extensive disturbance of these sediments and their contained fine ash 

layers seem unlikely. Furthermore, chemical analysis of the tephras in this sequence is 

entirely based on WDS measurements. Finally, a number of the tephras can be assigned 

varve as well as radiocarbon ages (Wulf et al., 2004).   

 

Next we test the potential for improved tephrostratigraphical correlation of Adriatic 

sequences and for matching key volcanic events to the Monticchio record.  An attempt is 

made to develop more rigorous analytical and statistical procedures and to apply them to 

classify fine distal ash layers of early to middle Holocene age which have previously 

proved difficult to interpret and which therefore provide a stringent test of the methods. 

 

3.2   Experimental aims 

Figure 7 shows the locations and stratigraphical context of a number of cores obtained 

from the prodelta sediment wedge that occupies the western margin of the Adriatic. Only 

a few of the sequences have been studied in detail, but provisional correlations are based 

on magnetic susceptibility data, rangefinder radiocarbon dates, preliminary analysis of 

visible tephra layers and key biostratigraphical markers, notably the disappearance of 

Globorotalia inflata which is a pronounced feature in each record (Asioli, 1996; 

Trincardi et al., 1996; Oldfield et al., 2003).  Collectively, these data are internally 

consistent, indicating that this segment of the Adriatic prodelta sediment wedge 

accumulated during the mid- to late Holocene.  The question arises, however, as to how 

far this general stratigraphical picture can be refined, since this will determine the level of 

sophistication with which sediment accumulation models can be constructed.   

 

It is difficult to provide a well defined answer to this question in numerical terms, since 

the uncertainties in the methods employed are rather large, and in some instances not 

easily quantified.  Problems constraining radiocarbon-based age models and  
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FIGURE 7:     Distribution of cores in the prodelta wedge of the Adriatic which record 
presence of Inter-Plinian (top map), Avellino (middle map) and Agnano Monte Spina 
(lowest map) tephras.  The lowermost diagram shows whole-core magnetic susceptibility 
records, the positions of visible tephra layers,  radiocarbon-dated horizons and the 
positions in each core of the disappearance of the foraminifer G. inflata for selected 
cores.   
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tephrostratigraphy have already been outlined.  The use of magnetic susceptibility data is 

also problematic, for susceptibility peaks may not always coincide with tephra layers, 

while fine ash layers often escape detection by this method (e.g. Abbott, 2005).  

Correlations based on magnetic susceptibility data need to be corroborated by some other 

approach.  Biostratigraphical marker events might be useful in this respect, though this 

approach assumes regional synchroneity in extinction and appearance of taxa, 

assumptions that may well be true but which need to be tested independently to avoid 

circular reasoning.  There is an urgent need, therefore, for more reliable approaches to 

numerical dating and/or for determining age equivalence between records.  Our key aim 

is to test the potential for tephrostratigraphy to meet these specific needs. 

 

 

In order to succeed in this objective, the following limitations must be overcome.  First, a 

more rigorous approach is required for classifying and comparing individual tephra 

layers.   Ideally this should be based on the statistical comparison of geochemical data 

obtained from new tephra layers with some standardized (‘type’) geochemical data for 

each volcanic event.  There are, however, no standardized protocols for carrying out such 

an exercise, or, for example, for comparing geochemical data obtained from distal ash 

layers with those obtained from proximal sites.  Second, as noted above, the methods 

used to obtain geochemical data and for statistical treatment of the results vary markedly 

between different operators, and frequently rely on selected sub-sets of the data.  Third, 

few core sequences have been examined systematically to ascertain the complete 

inventory of tephra layers preserved, which may include invisible distal ash layers.  

Finally, robust matching of tephra layers to key volcanic events of known age is a 

prerequisite for reliable tephrostratigraphy and tephrochronology.   While some Holocene 

tephras, such as those corresponding to the Mercato and Inter-Plinian events, do appear to 

have diagnostic chemical signatures, others, such as those originating from Vesuvius, 

Agnano Monte Spina and Astroni, are proving to be less reliable.  Some Holocene 

volcanic events appear to have been more complex than assumed hitherto, comprising 

several phases of activity spanning several centuries or more. 
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Clearly it is not possible to address all of these limitations satisfactorily in one isolated 

experiment.  This project was therefore confined to two key objectives:  (a) the 

application of a more standardized and rigorous protocol for comparing geochemical 

signatures obtained from glass shards;  and (b) the application of an alternative method 

for estimating the ages of individual tephras, one which avoids the marine reservoir 

problem. Central to this strategy was the extensive geochemical data-set generated for the 

tephras preserved in the Lago Grande di Monticchio lake sequence (Wulf et al., 2004).  

This not only provided a well constrained geochemical ‘training set’ against which the 

data obtained from the Adriatic records could be compared, but successful matching to 

the training set also enables the ages of some of the Adriatic tephras to be estimated in 

Monticchio varve years (MVY).  It should be noted, however, that for logistical reasons 

we were not able to re-examine all of the core sequences depicted in Figure 7.  Nine cores 

were selected for analysis, three of which were accessed through the Eurodelta project 

and the other six via complementary projects.  Collectively they constitute a NNW-SSE 

transect through the Adriatic prodelta wedge (Figure 1), enabling the stratigraphic 

continuity of the Holocene tephra layers to be assessed.   

 

 

3.3   Experimental methods 

 

The following laboratory and analytical steps were adopted. First, all tephra extraction 

and preparation procedures followed the recently revised laboratory protocol of Blockley 

et al. (2005), which avoids the use of aggressive chemical reagents at all stages. Second, 

all chemical analyses were undertaken using microprobe WDS measurement to ensure 

that the results were directly comparable with the Lago Grande di Monticchio data-base.  

JEOL JXA8800R and Cameca SU-30 microprobes were utilised, both machines 

operating with a defocused 10µm beam size and a 10nÅ current.  The beam count time 

for individual analyses was 20 seconds but this was reduced to 10 seconds for Na to 

avoid mobilization. Both machines were calibrated using modified standard blocks 

supplied by the instrument manufacturers, while NIST 612 and internally assayed 
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‘Lipari’ obsidian were used as secondary standards to test comparability of results 

between the two microprobes. The dual probe strategy was devised in part to maximise 

the number of analyses in the study but also to test the reliability of the resulting 

geochemical data. Thirdly, all geochemical data were log-transformed prior to statistical 

treatment (logged to Al2O3) to correct for the unit sum problem and to ensure that the full 

statistical variance was taken into account.  This approach limits the tendency for small 

ratio changes of elements present in low abundance to over-influence the results. 

 

Finally, the Adriatic geochemical data were statistically compared with the Monticchio 

data-base using Discriminant Function Analysis (DFA - for explanation of this approach, 

see Aitchison, 1987; Pollard et al., in press).  The Adriatic tephras fall into two groups, 

easily distinguished on stratigraphic criteria. The younger group is assigned to the mid 

Holocene or later because they all post-date the last occurrence of Globoratalia inflata 

(Figure 8).  The other group comprises two older tephras detected in cores YD97-09 and 

PAL94-77-390 only.  Two Monticchio training sets were therefore constructed for DFA. 

The first employed all data available for tephras dating to the interval 9678 to 1416 MVY 

BP.    The second spanned the mid Holocene to the Neapolitan Yellow Tuff, a widely 

dispersed regional marker dated to 14115-14106 MVY BP.  The combined Monticchio 

data-set comprised 480 WDS measurements.   

 

3.4   Results 

DFA clearly discriminated twelve discrete data clusters (here termed the ‘training 

groups’) within the selected Monticchi data, which generally conform to the geochemical 

clusters found by Wulf et al. (2004) for this part of the record.  Distinctive volcanic 

events in the Monticchio sequence are labelled TM- (see Table 2), numbered downwards 

from top, with TM-1 representing the youngest event.  While some of the TM events are 

single, isolated tephra layers, a number comprise several closely spaced tephra layers. 

These may reflect pulsed eruptions from a single volcanic centre over a short interval of 

time,  or pene-contemporaneous eruptions from more than one volcanic centre. TM-3 for 

example comprises three closely associated events, labeled TM-3a, TM-3b and TM-3c. 

This complexity apart, the key thing to note is that, with one exception, the individual  
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FIGURE 8:     Positions of the tephras ascribed by Canonical Discriminant Analysis to 
dated tephras in the Monticchio training set.    
 

tephra layers can be discriminated on the basis of their chemistry.  This was tested by 

establishing how many of the individual WDS measurements obtained from a single 

tephra layer had been allocated to the corresponding training group.  Results range from 

71 to 100%, with one exception, TM-5b (53%).  Indeed, the TM-5 group (a to c) are the 

least poorly resolved, largely because the number of WDS measurements available for 

this group is quite low. However, in no case were data assigned to a completely different 

TM group; mis-classification was always to another layer in the same TM group (e.g. 

24% of the TM-5b results were allocated to TM-5a). Figure 9 shows a plot of the first 

three Canonical Discriminant Functions for the Holocene training set, accounting for 

92.7% of the total variance.  Overall the results are considered to provide an acceptable 

basis for discriminating between tephras. 
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FIGURE 9:   Plot of first three Discriminant Functions for the Monticchio Training Set 
(Holocene tephra groups only).   For explanation see text, section 3.4. 
 

 
 

 

 

 

 

 

 

 

 

Sample Phase Group TM-2a TM-2b TM-2-1 TM-2-2 TM-3a TM-3b TM-3c TM-4 AVER TM-5a TM-5b TM-5c TM-5cd2 TM-5d
RF95-11 316-321 TM-6 TM-6a 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RF95-11 205-210 TM-5 TM-5 b,c 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 7.8 34.5 8.3 8.2 16.5
RF95-11 154 159 TM-3 TM-3a 0.0 0.3 0.0 0.2 66.3 6.6 17.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RF94-14 240 242 TM-3 TM-3a 0.0 0.3 0.0 0.2 66.3 6.6 17.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RF95-14 270 272 TM-5 TM-5 b,c 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 21.5 69.8 0.3 1.0
Rf 95-14 258 260 TM-3 TM-3c,a 0.0 0.0 0.0 0.1 38.8 6.1 55.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
COSO1-16 734 TM-5 TM-5c 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0
CSS00-12 172 Basic TM-2 TM-2a 99.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
PAL94-09 291.5-293.5TM-5 TM-5c 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 97.9 0.0 0.0
CSS012-393.5 TM-5 TM-5c 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 25.4 71.6 1.0 0.9
CSS00-07 690-693 TM-5 TM-5b,c 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 54.8 14.4 2.1 4.1
AMC-997 480-484 TM-5 TM-5c 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 25.9 69.6 0.8 0.7
CSS01-16 622 TM-3 TM-3c 0.0 0.0 0.0 0.0 0.0 0.0 98.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0
COS01-16 586 TM-3 TM-3a 0.0 6.8 0.0 0.5 70.4 2.6 5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Sample Phase Group TM-3a TM-3b TM-3c TM-4 TM-5a TM-5b TM-5c TM-5cd2 TM-5d TM-5-1b TM-5-1c TM-5-2 TM-6a TM-6b
YD-97-9 TM-7 TM-7b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
PAL 94-77-390 TM-7 TM-7b 0.2 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TM-6-3c TM-6-4a TM-6-4b TM-6-4c TM-6-5a TM-6-5b TM-6-5c TM-7a TM-7b TM-7-1a TM-7-2 TM-7-3 TM-8 TM-9
0 0.0031 0.0952 0.8273 0.3722 0.6993 0.7257 0.0001 53.5706 0.114 0.0916 0.0004 0.4593 0
0 0.0618 0.55905 1.9981 0.79465 0.758 1.30225 1.1368 85.1504 0.6633 0.3998 0.00955 1.92025 0

Table XXB: Summary (median values) of group allocations for each individual data point for tephra samples from Holocene/Lateglacial cores

.0

TABLE 2: Summary of most likely allocations (median values) of Adriatic data-
groups to the Monticchio training groups based on Canonical Discriminant Analysis 
scores.  (For further explanation see text sections 3.3 and 3.4)  This shows a 
representative selection of computed scores only, based on more extensive tables of 
results, an example of which is provided in Table 3. 
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The distinct clusters within the Monticchio training sets represent the Pomici Principali 

(Monticchio group TM-7), Agnano Monte Spina (TM-5 group, except 5b and 5c), 

Astroni (TM-5b and TM-5c) and Vesuvian Ap tephras (TM-3).   There is wider scatter, 

and overlap between, the results for the Mercato (TM-6) and Avellino (TM-4) tephras.  

The results suggest that this approach is able to discriminate well between some of the 

phases of the Vesuvian Ap activity, while it may possible in the future, with additional 

data, to distinguish between different phases of AMS and Astroni activity. Distinction 

between Mercato and Avellino tephras is likely to remain problematic, but will be clear 

on stratigraphical grounds if both are found in the same core, and/or if the AMS/Astroni 

tephras are also present in the same sequence.  Of course, the full succession will also be 

resolvable in a marine sequence if, as at Monticchio, all of the events are preserved in 

correct stratigraphic order. 

 

 

Distinct peaks in glass shard concentration were detected in 20 horizons within the 

Adriatic sediments examined, distributed between the nine core sequences as indicated in 

Figure 8.   Several shards were extracted from each of the tephra layers from which >800 

WDS measurements were obtained, though analytical totals were low (<94%) in some 

cases.  Totals can be low because of the very small size of the shards, the presence of 

mineral inclusions, or water content. It is particularly difficult to focus the microprobe 

beam on to flat, uncontaminated surfaces when the shards are not only very small, but are 

also highly vesicular and contain mineral inclusions. The WDS values with very low 

analytical totals were therefore removed, leaving a total of 639 data-points with analytical 

totals >94%.  DFA was conducted to compare these data with the 12 discrete clusters that 

characterise the Monticchio training sets. 

 

Two allocation methods were tested.  First, the Mahalanobis Distance of all samples to 

the most likely Monticchio group mean was calculated, giving a crude indication of the 

reliability of the allocation.  Second, because not all of the log-ratio data were normally 

distributed, a logistic regression allocation was also applied (Aitchison, 1987; Nathan and 

Pollard, in prep). These procedures generate extensive percentage allocation tables, which 
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estimate the probability of a match between individual data points and a test group (in 

this instance each training group). An example is provided in Table 3, which consists of 

an indicative sub-set of the data only, to illustrate how the summary data (Table 2) were 

derived.  A conclusive match to the Monticchio training set was only accepted if either 

the percentage allocation to a Monticchio training group is high (i.e. there is little 

probability that the data match more successfully to any other sub-group), or the samples 

are most frequently allocated to more than one sub-group within the same Monticchio 

TM horizon. The overall results of this exercise led to the tephra identifications and 

correlations shown in Figure 8. Confident allocations are possible for 15 of the 20 tephra 

layers studied. Problems were encountered with the remaining five samples because of 

the difficulties of obtaining reliable microprobe data from very small, highly vesicular 

glass shards. 

 

The Adriatic data are reasonably well clustered into groups, the majority of which match 

the clusters in the training set (Table 2; Figure 8).  In some instances the match suggested 

by DFA is unequivocal, such as the allocations of the three tephras in core RF95-11 to the 

TM-6a (Mercato), TM-5c (Astroni) and TM-3 (Vesuvian AP events) respectively, and of 

single tephra horizons in cores PAL94-77 and YD 97-09 to the Pomici Principali event 

(Figure 8).  Table 3 provides the example of the full set of canonical discriminant results 

derived for the tephra horizon located in core RF95-11 between depths 316-321 cm.  It 

can be seen that the highest canonical scores are nearly always allocated to Tephra type 

TM-6a (Mercato tephra).  In other instances the DFA acceptance scores are low (Table 

2), and attribution therefore less clear, usually because the number of microprobe 

measurements available is too low for confident statistical comparison. 

 

 

The results of the experiment are encouraging, demonstrating that fine (distal) ash layers 

are preserved within prodelta sediment sequences in correct stratigraphic order, a number 

of which can be matched to type material.  16 out of the 20 layers examined could be 

assigned to one of two or, at most, three phases of activity that occurred within a limited 

time period, while others could be assigned to single volcanic events. It should be noted,  
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Group posterior
Group TM-2a TM-2b TM-2-1 TM-2-2 TM-3a TM-3b TM-3c TM-4 AVER TM-5a TM-5b TM-5c TM-5cd2 TM-5d TM-5-1b TM-5-1c TM-5-2 TM-6a TM-6b

RF95-11 316-321 TM-6a 0 0 0.0003 0 0 0 0.0101 0 0.0002 0 0 0 0 0 0 0 0 99.989 0.00
RF95-11 316-321 TM-6a 0 0 0.0006 0 0 0 0.0013 0.0001 0.0001 0 0 0 0 0 0 0 0 99.9975 0.00
RF95-11 316-321 TM-6a 0 0 0.1417 0 0 0.0014 11.4477 0 0.0011 0 0 0 0 0.0053 0 0 0 88.4027 0
RF95-11 316-321 TM-6a 0 0 0.0025 0 0 0 0.0582 0.0007 0.0001 0 0 0 0 0 0 0 0 99.936 0.00
RF95-11 316-321 TM-6a 0 0 0.5423 0 0 0.008 38.1176 0 0.0126 0 0 0 0 0.0017 0 0 0 61.3177 0.00
RF95-11 316-321 TM-6a 0 0 0.0005 0 0 0 0.0035 0 0.0002 0 0 0 0 0 0 0 0 99.9941 0.00
RF95-11 316-321 TM-6a 0 0 0.0002 0 0 0 0.007 0.0001 0.0001 0 0 0 0 0 0 0 0 99.9888 0.00
RF95-11 316-321 TM-6a 0 0 0.028 0 0 0.0017 5.04 0 0.0022 0 0 0 0 0.0011 0 0 0 94.9269 0
RF95-11 316-321 TM-6a 0 0 0.1575 0 0 0 0.0959 0 0.0307 0 0 0 0 0.0001 0 0 0 99.7154 0.00
RF95-11 316-321 TM-5b 0 0 0.0011 0 0 0 0.0002 0 0 0.0401 83.3534 11.0537 0.7924 4.759 0 0 0.0001 0.0001 0
RF95-11 316-321 TM-6a 0 0 0.0122 0 0 0 0.0436 0.0004 0.0473 0 0 0 0 0 0 0 0 99.8741 0.02
RF95-11 316-321 TM-2-1 0 0 51.3557 0 0 0 0.1892 0 0.185 0 0 0 0 0.1329 0 0 0 48.1372 0
RF95-11 316-321 TM-6a 0 0 26.394 0 0 0.0001 0.3199 0 0.2396 0 0 0 0 0.0664 0 0 0 72.9801 0
RF95-11 316-321 TM-6a 0 0 0.0183 0 0 0 0.2062 0 0.0053 0 0 0 0 0.0001 0 0 0 99.7696 0.00
RF95-11 316-321 TM-6a 0 0 0 0 0 0 0.0006 0 0 0 0 0 0 0 0 0 0 99.9994 0
RF95-11 316-321 TM-6a 0 0 0.0006 0 0 0 0.0079 0.0016 0.012 0 0 0 0 0 0 0 0 99.9328 0.04
RF95-11 316-321 TM-6a 0 0 0 0 0 0 0 5.6419 0 0 0 0 0 0 0 0 0 59.7786 34.57
RF95-11 316-321 TM-6a 0 0 0.0003 0 0 0 0.0229 0.0031 0 0 0 0 0 0 0 0 0 99.9551 0.01
RF95-11 316-321 TM-6a 0 0 0.2402 0 0 0 30.2791 0.0051 0 0 0 0 0 0.0005 0 0 0 69.4738 0.00
RF95-11 316-321 TM-6a 0 0 0.0561 0 0 0 0.0263 0.0004 0 0 0 0 0 0 0 0 0 99.9165 0.00
RF95-11 316-321 TM-6a 0 0 0.2837 0 0 0 0.4065 0.0003 0.0045 0 0 0 0 0 0 0 0 99.3042 0.00
RF95-11 316-321 TM-6a 0 0 0.5827 0 0 0.0004 30.0959 0.0018 0.0193 0 0 0 0 0.0006 0 0 0 69.2434 0.05
RF95-11 316-321 TM-6a 0 0 0.0023 0 0 0 0.0096 0 0.0004 0 0 0 0 0 0 0 0 99.9876 0
RF95-11 316-321 TM-6a 0 0 0.2317 0 0 0.0001 3.003 0 0.0099 0 0 0 0 0.0022 0 0 0 96.7529 0.00
RF95-11 316-321 TM-6a 0 0 0.212 0 0 0.0002 7.722 0.0295 0.0301 0 0 0 0 0.0001 0 0 0 91.5442 0.46
RF95-11 316-321 TM-6a 0 0 0.0049 0 0 0 0.1574 0.0051 0 0 0 0 0 0 0 0 0 99.8275 0.00
RF95-11 316-321 TM-6a 0 0 0 0 0 0 0 1.2924 0 0 0 0 0 0 0 0 0 97.5251 1.18
RF95-11 316-321 TM-6a 0 0 0.0018 0 0 0 0.1691 0.1654 0 0 0 0 0 0 0 0 0 99.6493 0.01
RF95-11 316-321 TM-6a 0 0 0.0626 0 0 0.0001 1.3207 0.0543 0.0086 0 0 0 0 0 0 0 0 98.394 0.15
RF95-11 316-321 TM-6a 0 0 0.2782 0 0 0.0041 16.8287 0 0.0204 0 0 0 0 0.0032 0 0 0 82.8654 0
RF95-11 316-321 TM-6a 0 0 0.0046 0 0 0 0.4737 0.0081 0.0034 0 0 0 0 0 0 0 0 99.4101 0.10
RF95-11 316-321 TM-6a 0 0 0.1729 0 0 0 24.6015 0.0481 0 0 0 0 0 0.0001 0 0 0 75.1758 0.00
RF95-11 316-321 TM-6a 0 0 0.001 0 0 0 0.0398 0.0006 0.0083 0 0 0 0 0 0 0 0 99.917 0.03
RF95-11 316-321 TM-6a 0 0 1.8777 0 0 0.0004 38.5257 0.0158 0.0007 0 0 0 0 0.0006 0 0 0 59.5754 0.00
RF95-11 316-321 TM-6a 0 0 0.1861 0 0 0.0003 7.8749 0.0255 0.0055 0 0 0 0 0.0001 0 0 0 91.8459 0.06
RF95-11 316-321 TM-3c 0 0 0.0084 0.0001 0.0402 0.6622 98.8594 0 0.0001 0 0 0 0 0.0002 0 0 0 0.4293
RF95-11 316-321 TM-6a 0 0 0.5602 0 0 0.0019 14.7277 0.0048 0.02 0 0 0 0 0.0003 0 0 0 84.6805 0.00
RF95-11 316-321 TM-6a 0 0 0.0111 0 0 0.0001 2.2999 0.0088 0.0009 0 0 0 0 0.0001 0 0 0 97.6546 0.02
RF95-11 316-321 TM-6a 0 0 0.1586 0 0 0.0001 24.7867 0.2365 0.0006 0 0 0 0 0.0003 0 0 0 74.6739 0.14
RF95-11 316-321 TM-6a 0 0 0.0972 0 0 0.0003 23.1269 0.0024 0.0002 0 0 0 0 0.0005 0 0 0 76.7721 0.00
RF95-11 316-321 TM-6a 0 0 0.0023 0 0 0 0.0378 0.0001 0 0 0 0 0 0 0 0 0 99.9589 0.00
RF95-11 316-321 TM-6a 0 0 0.0006 0 0 0 0.7491 0.0001 0 0 0 0 0 0.0001 0 0 0 99.2479 0.00
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37
17

0
46
45
32
05
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21

 

TABLE 3: The full allocation output for Adriatic group RF95-11, 316-321 cm.  This 
shows the most likely allocation of each WDS array obtained from each shard analysed in 
this group, and which led to the summary allocation to Monticchio group TM6-a 
(Mercato tephra) in Table 2. 
 

 

however, that this experiment was limited to the screening of selected segments in each 

core sequence – those showing high magnetic susceptibility peaks.   The only way to 

establish the full tephrostratigraphic record preserved in each sediment sequence is to  

undertake a systematic investigation of each full succession.  This approach is likely to 

reveal additional tephra layers not represented in Figure 8, which may resolve some of 

the problematic cases.  Furthermore, we believe that clearer discrimination between the 

tephras, and even between the different phases of the AMS, Astroni and Vesuvian suites, 

will become possible as the data-bank of chemical determinations grows, but only if the 

measurements are undertaken with sufficient rigour. 
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A further outcome of the experiment is that Monticchio varve ages can be assigned to 

those Adriatic tephras that can be confidently matched to the Monticchio tephra  

succession (bottom of Figure 8).  Note that the varve ages shown do not include the 

uncertainties in the varve chronology (Brandt et al., 1999), while there are also 

uncertainties in determining which precise horizon within a tephra layer coincides with 

the time of volcanic explosion.  Complicating factors might include irregular delivery of 

tephra material to the site, changes in the manner and rate of sedimentation during tephra 

deposition and possible downward transport of shards due to biogenic mixing. 

Nevertheless the results illustrate the potential this approach offers for testing and 

improving age models obtained from marine sequences based on radiocarbon dating.  

Indeed, if tephrostratigraphical research can be applied more routinely, and the ages of 

the tephras more confidently established, then tephrochronology could, in theory, replace 

radiocarbon dating as the more efficient, standard procedure for dating late Quaternary 

sequences in areas that fall within the footprints of key ashfalls.   

 

4.   Conclusions  
The key conclusions to emerge from the arguments presented in this paper are as follows. 

1. Radiocarbon-based age models for Holocene stratigraphical records cannot 

normally deliver better than centennial precision, unless a minimum of 24 

radiocarbon dates is available to support the models.  Age models for pre-

Holocene periods are even less precise, with uncertainties commonly millennial in 

scale, mainly because of the limitations of currently-available calibration models.   

Radiocarbon dating of marine records is particularly problematic because of the 

pervasive and, at present, poorly constrained marine reservoir effects.  

2. Independent methods are therefore needed to constrain and correct radiocarbon-

based age models and to test correlations based upon them.  Tephrostratigraphy 

appears to provide the best opportunity for achieving this, as far as the Adriatic, 

and possibly other parts of the central Mediterranean, are concerned. 

3. If tephrostratigraphy is to fulfil this role, methods of tephra extraction, 

geochemical analysis and statistical classification need to be better standardised 

and more rigorous than has generally been the case hitherto. The current practice 
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of chemical classification based on biplots or triplots of selected element ratios 

does not capture the true variance between data-sets, and may lead to spurious 

identifications and correlations.  The use of methods that examine the full 

geochemical data-suites available, such as Canonical Discriminant Analysis, 

coupled with (i) an increase in the size of the geochemical data-sets generated for 

each tephra under study and (ii) log-ratio transformation of the data, should 

provide more stringent tests of the degree of discrimination or similarity between 

tephras. 

4. Regional tephrostratigraphical type sequences containing tephra layers that are 

preserved in unequivocal stratigraphic succession, and within which the chemical 

signatures and ages of individual tephras can be established reliably, are pivotal 

for generating standards against which less complete or more stratigraphically 

complex sequences can be compared.  The Lago Grande di Monticchio record is 

currently the best candidate to fulfill this role for the central Mediterranean 

region. 

 

In due course, the stratigraphical succession of tephras preserved in the late Quaternary 

sediments of the Mediterranean will become more fully understood, and their ages and 

chemical characteristics better defined.  This will undoubtedly increase their value in 

providing a stratigraphic ‘template’ of isochronous volcanic events.  Stratigraphic 

complexities (resedimentation, hiatuses, bioturbation, etc.) may serve to distort the 

records locally, but our experiences of tephrostratigraphical records in the Adriatic so far, 

together with the data published by Siani et al. (2004), indicate the preservation of a 

sequential order of tephra layers in several deep and shallow basins.  Hence, volcanic 

event stratigraphy appears to have wide application, and, at least for sediments dating to 

the last 50,000 years (the limits of conventional radiocarbon dating), provides a well 

constrained, independent basis for testing radiocarbon-based age models. Its wider 

adoption should bring greater clarity to reconstructions of the rate and pattern of 

sedimentary accretion in the Adriatic.
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